86 research outputs found

    Investigating Elevated Aqua Modis Aerosol Optical Depth Retrievals Over The Mid-Latitude Southern Oceans

    Get PDF
    A band of elevated aerosol optical depth (AOD) over the mid-latitude Southern Oceans has been identified in some passive satellite-based aerosol datasets such as Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) products. In this study, Aqua MODIS (AM) aerosol products in this zonal region are investigated in detail to assess retrieval accuracy. This is done through multiple data sets, including spatially and temporally collocated cloud and aerosol products produced by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) project for investigating AM AOD in this region with respect to lidar profiling of cloud presence. Maritime Aerosol Network (MAN) and Aerosol Robotic Network (AERONET) AOD data are also collocated with AM for surface context. The results of this study suggest that the apparent high AOD belt, seen in some satellite aerosol products based on passive remote sensing methods, is not seen in the CALIOP aerosol product based on an active remote sensing technique with an enhanced cloud detection capability and is not detected from ground-based observations such as MAN and AERONET data. The apparent high AOD belt, although largely attributed to stratocumulus and low broken cumulus cloud contamination as suggested by CALIOP products, could not be fully credited to cloud contamination. Collocated CALIOP data also suggest that the current cloud screening methods implemented in the over ocean AM aerosol products are ineffective in identifying cirrus clouds. Cloud residuals still exist in the AM AOD products even with the use of the most stringent cloud screening settings

    An Investigation Of Particulate Matter Air Pollution Using Caliop Observations

    Get PDF
    Particulate matter with aerodynamic diameters smaller than 2.5 ”m (PM2.5) contributes greatly to air pollution and poses significant threats to human health. Space-borne passive aerosol measurements, with their large spatial coverage, have been applied for estimating surface-based PM2.5 concentrations. Specifically, column-integrated aerosol optical thickness (AOT) observations, like those from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) instruments, have been leveraged for this task. In this doctoral research study, the issues and limitations with estimating PM2.5 from passively-retrieved MODIS and MISR AOT over the contiguous United States (CONUS) were first explored. Second, the potential of using active space-borne NASA Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) near-surface aerosol extinction retrievals for PM2.5 estimation is studied. This includes exploration of various factors that affect CALIOP aerosol data processing, including the retrieval fill value (RFV) issue that results from CALIOP minimum aerosol detection limits. Next, an innovative approach for deriving PM2.5 concentrations directly from CALIOP near-surface aerosol extinction data has been explored using a bulk-mass-modeling-based method, and were validated against in situ PM2.5 from U.S. Environmental Protection Agency (EPA) ground stations. Lastly, temporal variations of CALIOP-based aerosol vertical distribution, including trends of near-surface aerosol loading, were examined globally and regionally to infer possible changes in surface air quality

    A bulk-mass-modeling-based method for retrieving particulate matter pollution using CALIOP observations

    Get PDF
    In this proof-of-concept paper, we apply a bulk-mass-modeling method using observations from the NASA Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument for retrieving particulate matter (PM) concentration over the contiguous United States (CONUS) over a 2-year period (2008–2009). Different from previous approaches that rely on empirical relationships between aerosol optical depth (AOD) and PM2.5 (PM with particle diameters less than 2.5 ”m), for the first time, we derive PM2.5 concentrations, during both daytime and nighttime, from near-surface CALIOP aerosol extinction retrievals using bulk mass extinction coefficients and model-based hygroscopicity. Preliminary results from this 2-year study conducted over the CONUS show a good agreement (r2∌0.48; mean bias of −3.3 ”g m−3) between the averaged nighttime CALIOP-derived PM2.5 and ground-based PM2.5 (with a lower r2 of ∌0.21 for daytime; mean bias of −0.4 ”g m−3), suggesting that PM concentrations can be obtained from active-based spaceborne observations with reasonable accuracy. Results from sensitivity studies suggest that accurate aerosol typing is needed for applying CALIOP measurements for PM2.5 studies. Lastly, the e-folding correlation length for surface PM2.5 is found to be around 600 km for the entire CONUS (∌300 km for western CONUS and ∌700 km for eastern CONUS), indicating that CALIOP observations, although sparse in spatial coverage, may still be applicable for PM2.5 studies

    Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band

    Get PDF
    Using nighttime observations from Visible Infrared Imager Radiometer Suite (VIIRS) Day/Night band (DNB), the characteristics of artificial light sources are evaluated as functions of observation conditions, and incremental improvements are documented on nighttime aerosol retrievals using VIIRS DNB data on a regional scale. We find that the standard deviation of instantaneous radiance for a given artificial light source is strongly dependent upon the satellite viewing angle but is weakly dependent on lunar fraction and lunar angle. Retrieval of nighttime aerosol optical thickness (AOT) based on the novel use of these artificial light sources is demonstrated for three selected regions (United States, Middle East and India) during 2015. Reasonable agreement is found between nighttime AOTs from the VIIRS DNB and temporally adjacent daytime AOTs from the AErosol RObotic NETwork (AERONET) as well as from coincident nighttime AOT retrievals from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), indicating the potential of this method to begin filling critical gaps in diurnal AOT information at both regional and global scales. Issues related to cloud, snow and ice contamination during the winter season, as well as data loss due to the misclassification of thick aerosol plumes as clouds, must be addressed to make the algorithm operationally robust

    Minimum Aerosol Layer Detection Sensitivities and Their Subsequent Impacts on Aerosol Optical Thickness Retrievals in CALIPSO Level 2 Data Products

    Get PDF
    Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (20072008 and 20102011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called noise floor, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT

    Minimum Aerosol Layer Detection Sensitivities and Their Subsequent Impacts on Aerosol Optical Thickness Retrievals in CALIPSO Level 2 Data Products

    Get PDF
    Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007– 2008 and 2010–2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called “noise floor”, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and nonall-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT

    Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes

    Get PDF
    AbstractSatellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10m3m−3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time

    Conceptualizing the impact of dust-contaminated infrared radiances on data assimilation for numerical weather prediction

    Get PDF
    Numerical weather prediction systems depend on Hyperspectral Infrared Sounder (HIS) data, yet the impacts of dust-contaminated HIS radiances on weather forecasts has not been quantified. To determine the impact of dust aerosol on HIS radiance assimilation, we use a modified radiance assimilation system employing a one-dimensional variational assimilation system (1DVAR) developed under the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Numerical Weather Prediction–Satellite Application Facility (NWP-SAF) project, which uses the Radiative Transfer for TOVS (RTTOV). Dust aerosol impacts on analyzed temperature and moisture fields are quantified using synthetic HIS observations from rawinsonde, Micropulse Lidar Network (MPLNET), and Aerosol Robotic Network (AERONET). Specifically, a unit dust aerosol optical depth (AOD) contamination at 550 nm can introduce larger than 2.4 and 8.6 K peak biases in analyzed temperature and dewpoint, respectively, over our test domain. We hypothesize that aerosol observations, or even possibly forecasts from aerosol predication models, may be used operationally to mitigate dust induced temperature and moisture analysis biases through forward radiative transfer modeling.This study is supported by the NASA ROSES Science of Terra and Aqua program (T. Lee; 80HQTR18T0085). The MPLNET project is funded by the NASA Radiation Sciences Program and Earth Observing System. MPLNET observations at the Santa Cruz de Tenerife site are supported by the INTA Grant IGE03004

    Subject inversion in non-native Spanish

    Get PDF
    This study presents new empirical evidence on the L2 acquisition of Spanish SV–VS contrasts, a syntax-pragmatics interface phenomenon. Results from a context-dependant preference task involving unergative and unaccusative verbs in different focus situations (broad and narrow focus) reveal that beginner and intermediate English speakers prefer SV in all contexts. In contrast, advanced learners, who clearly know that VS is possible in Spanish, show a pattern of optionality with unergative verbs (in both broad and narrow focus contexts), whereas VS is correctly preferred with unaccusative verbs in both broad and narrowly-focused contexts. We argue that these results can be explained by a representational deficit according to which the VS order is overgeneralised to unergative verbs regardless of the discursive situation. We argue that learners’ overuse of VS structures is exacerbated by the lack of clear evidence for the use of SV and VS forms in the native input

    Behavioral Profiles of Affected and Unaffected Siblings of Children with Autism: Contribution of Measures of Mother–Infant Interaction and Nonverbal Communication

    Get PDF
    We investigated whether deficits in social gaze and affect and in joint attention behaviors are evident within the first year of life among siblings of children with autism who go on to be diagnosed with autism or ASD (ASD) and siblings who are non-diagnosed (NoASD-sib) compared to low-risk controls. The ASD group did not differ from the other two groups at 6 months of age in the frequency of gaze, smiles, and vocalizations directed toward the caregiver, nor in their sensitivity to her withdrawal from interaction. However, by 12 months, infants in the ASD group exhibited lower rates of joint attention and requesting behaviors. In contrast, NoASD-sibs did not differ from comparison infants on any variables of interest at 6 and 12 months
    • 

    corecore